How to solve a radiometric dating problem

Another possibility is spontaneous fission into two or more nuclides.

While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays exponentially at a rate described by a parameter known as the half-life, usually given in units of years when discussing dating techniques.

For example, the age of the Amitsoq gneisses from western Greenland was determined to be Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material.

The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

This normally involves isotope-ratio mass spectrometry. The precision of a dating method depends in part on the half-life of the radioactive isotope involved.

On the other hand, the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.

If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusion, setting the isotopic "clock" to zero.

Search for how to solve a radiometric dating problem:

how to solve a radiometric dating problem-82how to solve a radiometric dating problem-4how to solve a radiometric dating problem-59

In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter.

Leave a Reply

Your email address will not be published. Required fields are marked *

One thought on “how to solve a radiometric dating problem”